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REVIEW 
Determination of Three Body Correlations in Simple Liquids 

by RMC Modelling of Diffraction Data. I. Theoretical Tests 

R. L. McGREEVY and M. A. HOWE 

Clarendon Laboratory, Parks Road, Ox,ford, OX1 3PU, UK 

(Received 26 May 1991) 

In theory all the information regarding the three dimensional structure of a liquid is contained in the pair 
distribution function g(r)  or, equivalently, the structure factor .4(Q), for a system with purely pairwise 
additive potentials. RMC is a method for modelling the structures of disordered systems based on the 
experimentally measured structure factor(s). We have performed some theoretical tests of the method, 
using input data calculated from simulations for various systems, which show that RMC does indeed 
work successfully if the potentials are pairwise additive. In cases where they are not then the imposition 
of constraints, e.g. modelling molecular systems with molecules rather than atoms, can enable the three 
dimensional structure to be determined. When the potentials are very complex, which usually makes the 
problem unsuitable for MC or M D  simulations, RMC with constraints is still a valuable way of 
distinguishing between various structural possibilities. 

KEY WORDS: Reverse Monte Carlo method, pairwise additive potentials. 

1 INTRODUCTION 

One of the mains aims in the study of the liquid state is to determine the structures 
of liquids and to understand how they depend on the interatomic forces. By this we 
do not mean that we wish to know the instantaneous position of every atom but 
rather, since liquids do not generally have long range order, to parameterise the short 
range order in terms of various correlation functions. However a liquid is macro- 
scopically isotropic, so diffraction data only give information on the pair correlation 
function, g(r) .  There are various theoretical methods for using g(r) to obtain informa- 
tion on three body correlations but these involve approximations which are often 
inadequate. Monte Carlo (MC) or molecular dynamics (MD) computer simulation 
methods may be used to investigate all aspects of structure and dynamics but it is 
rare that the structure produced agrees with the diffraction data within its errors, 
and it is difficult to know how to alter interatomic potentials to improve the level 
of agreement. Since a hard sphere model is often a good first approximation to the 
structure of a liquid it is important that structural models are in good agreement 
with the data if deviations from hard sphere behaviour are to be understood in any 
detail. 

The recently developed Reverse Monte Carlo' (RMC) method of structural 
modelling overcomes many of these problems. RMC does not necessarily produce 
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2 R.  L. McGREEVY AND M. A. HOWE 

the ‘correct’ answer, but then neither does any other technique; indeed one of the 
major contributions of the method has been to stress this point. However the 
information that may be obtained from a model that agrees quantitatively with 
diffraction data, even though for instance it may contain features that would be 
energetically unfavourable, may be more useful in understanding the type of structure 
than a model which is energy minimised, e.g. one produced by an MC or MD 
simulation, but agrees only qualitatively with the data. This is even more true when 
investigating small differences betheen structures. 

In this paper we describe the RMC method and report some theoretical tests of 
its validity. In a later paper we will review the information that may be obtained on 
three body correlations, with particular emphasis on elemental liquids. 

2 RMCMETHOD 

The aim of RMC is to produce three dimensional structural models of a system that 
are consistent with the available diffraction data, within the errors of that data. To 
do this we use a modification of the standird Metropolis Monte Carlo (MMC) 
method’ where, instead of minimising the system energy we minimise the difference 
between the calculated and experimental spectra. Here we will only describe the basic 
method as a fuller description is available elsewhere3. 

The algorithm for RMC is as follows. 

1) Start with an initial configuration, i.e. a set of coordinates in a box representing 
atomic positions, with periodic boundary conditions. Calculate (C) the radial distribu- 
tion function 

where p is the atom number density and nc(r) is the number of atoms at a distance 
between r and r + dr  from a central atom, averaged over all atoms as centres. 
Transform to the structure factor 

Calculate 

rn 

Z: = 1 C’8Qi) - AE(Qi)12/a’(Qi) 
i =  1 

where A“(Qi)  is the experimentally measured structure factor and CJ is a measure 
of the experimental error. 
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REVERSE MONTE CARL0 METHOD 3 

2) Move one atom at random. Calculate the new g:(r) and At(Q) and 

3) If x,’ < x; the move is accepted. If xi > 

4) Repeat from step 2. 

It can immediately be seen that x2 in RMC is equivalent to U/kT in MMC. x’ 
will initially decrease until it reaches an equilibrium value about which it will oscillate. 
The resulting configuration should be a three dimensional structure that is consistent 
with the experimental structure factor within the experimental error. Further in- 
dependent configurations may then be collected by continuing to run the simulation 
under the same conditions as for MMC. 

RMC is easily adapted so that different functions are used. The basic method 
outlined above is for modelling the structure factor of a one component system. 
Instead of modelling AE(Qi) we could alternatively model gE(rj)  (the two are not 
identical), and x2  becomes 

the move is accepted with probability 
exp( -(xi - &)/2). Otherwise it is rejected. 

m, 

X’ = C Cgc(rj) - gE(r j ) I /g2(r j )  
i =  1 

This is obviously computationally faster since a transform is not required during 
each iteration. For a multicomponent system where different total structure factors 
(indicated by index k )  

FkE(Qi) = CCaCfibzbp(Aap(Qi) - 1) 
a. B 

have been measured, for instance using neutron diffraction 
tion, we then have 

X’ = 2 2 CFt(Qi) - Ff(Qi)l/a;(Qi) 
k i = l  

with isotopic substitu- 

c, is the concentration and b, the coherent scattering length of component a;  
A,@(Q) are the partial structure factors. In the same way results from neutron and 
X-ray diffraction measurements may be combined4. In fact any data set may be used 
if a spectrum Sc can be calculated from the structure and compared to the 
experimental SE. This has been done for EXAFS’ and may be possible in some cases 
for NMR. 

The above algorithm is normally used in conjunction with a set of constraints. 
The purpose of these constraints can be to compensate for some errors in the 
experimental data; the imposition of a minimum ‘hard sphere’ radius for atoms is 
useful in this respect. Constraints can also be used to ‘forbid’ or ‘discourage’ certain 
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4 R. L. McGKEEVY AND M. A. HOWE 

structural features that would be consistent with the data but are known to be unlikely 
from other information, e.g. chemical bonding ideas, or to deliberately investigate 
the range of possible structures that are consistent with the data. 

3 UNIQUENESS 

The three dimensional structure produced by RMC is not unique, it is simply a model 
that is consistent with the data and any additional constraints. Other methods that 
produce structures which are equally consistent with the data are equally valid and 
there is no way of determining which is 'correct' in the ubsence of any additionul 
information. One possible disadvantage of RMC is that it tends to produce the most 
disordered structure that is consistent with the data and constraints, 1.e. the configura- 
tional entropy is maximised. However this is sometimes counteracted by the ability 
to include additional constraints. 

In the special case of a system for which the interatomic potential is purely pairwise 
additive there is a theoretical justification6 for the determination of the three 
dimensional structure from a one dimensional g ( r )  or A(Q).  Given that the potential 
uniquely determines the structure 

where g")(rl, r 2 )  = g(r )  and g(" '( .  . .) are the n-body correlation functions, then for a 
pairwise additive potential there is a functional relationship between +(r)  and g(r )  
such that 

g'2'(ri, r 2 )  -+ O ( r )  

i.e. y'2' uniquely determines 4. This is not to say that we can write down the 
relationship, but merely that one exists. If g ( r )  determines 4 ( r )  and &r) determines 
the structure, then q ( r )  determines the structure i.e. 

While the potentials in real systems are never purely pairwise additive (though 
such potentials are used in the majority of MhlC and MD simulations), and an 
experimentally determined A( Q) is neither complete or absolutely accurate, the above 
result does indicate that a precisely measured y(r) or A(Q) does contain a great deul 
of information about the three dimensional structure. RMC is a possible way of 
attempting to extract this information. 

4 TESTSOFRMC 

It is difficult to obtain three-particle correlation functions directly from experimental 
results and thus difficult to know whether those obtained by RMC are correct. 
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REVERSE MONTE CARL0 METHOD 5 

However this is not true of computer simulation results; any correlation functions 
obtainable by RMC can also be calculated for MD or MMC simulations. This means 
some general tests of RMC can be performed by using as input data the structure 
factors, or radial distribution functions obtained from a simulation. When a satis- 
factory fit to this input data has been obtained various correlation functions can 
be calculated from the RMC configurations and compared with those obtained from 
the original simulation. 

4.1 Hard sphere liquid 

The first test was on a hard sphere liquid. Starting from a configuration of 4096 
atoms placed at random positions in a cubic box of 68.52A a hard sphere MMC 
simulation was performed using a hard sphere diameter of 3.5 A (packing fraction 
0.29). After equilibriation the simulation was continued, saving one configuration 
after every 4096 accepted moves, until a total of 20 configurations had been saved. 
For each of these the radial distribution function g(r) ,  the structure factor A(Q), the 
‘bond-angle’ distribution b(@, and the coordination number distribution P(N)  were 
calculated and then averaged. P(N)  is defined as the probability of an atom having 
exactly N neighbours within a certain distance, and b(8) is the probability that two 
such neighbours form with the central atom an angle of 8. The results are shown in 
Figure 1. 

0 5 I5 20 0 1 2  3 4 5 6 7 0 9 10 
Q/A-’ 

0.754 I 

-1.0 -0.5 0.0 0.5 1.0 
cos(e) 

0.2 

z 
a v 

0.1 

0.0 
0 5 10 15 

N 

Figure 1 The radial distribution function (top left), structure factor (top right), ‘bond angle’ distribution 
(bottom left) and coordination number distribution (bottom right) for the MMC hard sphere simulation 
(solid line and filled bars) and for the RMC calculation fitting to the MMC S(Q) (broken line and open 
bars). 
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6 R. L. McGREEVY AND M. A. HOWE 

Two separate RMC calculations were then performed, both starting from a random 
configuration of 4096 atoms as in the MMC simulation, one fitting to the MMC g(r) 
and one to the MMC A(Q). In the former case, as g(r) is clearly zero at r 5 3.5 A 
(the hard-sphere diameter of the simulation) this distance was used as the closest 
distance of approach; in the latter a smaller distance was chosen indicating that the 
hard sphere constraint is unnecessary if good (in this case ideal) data are available. 
Using a small value of 0 (0.01) so a,j to get an excellent fit with the simulation data, 
both RMC calculations were run until convergence and thereafter, saving one 
configuration in 4096, until 20 configurations had been saved from each. 

The functions g(r), A(Q) ,  b(U), and P ( N )  were calculated. In Figure 1 they are 
compared with those from the original simulation. The differences in three-body 
correlations are very small and in fact are much smaller than the variation of these 
correlations between the original 20  MMC configurations. 

In the absence of experimental data RMC is much like a hard sphere simulation 
so i t  might be argued that this result is to be expected especially as we have used 
the hard sphere diameter, in the form of the cut-off, as a constraint in our calculation. 
However it is the requirement of fitring to the data that is the real constraint: to get 
a good fit to the data the g(r) must be zero, or very close to zero, in this region. The 
cut-off simply makes sure that it is exactly zero and that there are no particles 
unreasonably close to one another (a handful of such distances might still produce 
a fit within the known errors). 

4.2 Lennard- Jones liquid 

The second test was on a Lennard-Jones liquid. An MMC simulation was performed, 
starting from a random configuration of 4000 atoms, using a density of 0.0176A 
and a Lennard-Jones potential with parameters o = 3.36 A, &/kg = 123.2 K-values 
that have been used for simulation:; of liquid argon’. 20 configurations were saved 
and the average calculated structurz factor was used as input to RMC. The results 
obtained are shown in Figure 2 and can be seen to be in good agreement with one 
another as was the case for the hard sphere liquid. 

4 .3  Liquid qf Hurd Duinbells 

On the basis of the theoretical justifcation for RMC already discussed these results 
would have been expected because hoth the hard sphere and Lennard-Jones systems 
involve only two-body interactions. We now turn our attention to a system that 
contains, in terms of atoms, many-body interactions. The example chosen is that of 
a liquid of diatomic molecules. 

For the MMC simulation the molecule has been represented as a hard dumbell, 
i.e. two intersecting hard spheres. The hard sphere diameter was 2.8 A, the bond 
length 1.1 A, and the atomic number density 0.037 A -  (values roughly appropriate 
to liquid nitrogen). Starting with a configuration of 2000 molecules placed at random 
positions with random orientations an MMC simulation was performed, saving 20 
configurations after reaching equilibrium. From these the structure factor was 
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REVERSE MONTE CARL0 METHOD 7 

0 5 15 20 

0.24 

0.75- 0.2 

0.16 

d 0.12 

0.08 

0.04 

0.0 

- n 2 0.5- z 
n -  

0.25- 

-0.5 0.0 0.5 1.0 0 5 10 15 19 
N -1.0 

cos(e) 

Figure 2. The radial distribution function (top left), structure factor (top right), 'bond angle' distribution 
(bottom left) and coordination number distribution (bottom right) for the MMC Lennard-Jones simulation 
(solid line and filled bars) and for the RMC calculation fitting to the MMC S(Q) (broken line and open 
bars). 

calculated and used as the experimental input in an RMC calculation with a 
configuration of 4000 atoms. The result at convergence, from just one configuration 
this time, is shown in Figure 3. Despite excellent agreement with g ( r )  and S(Q) ,  P(N)  
not correct: only 44% of the atoms have the one fold coordination of diatomic 
molecules even though the average coordination number is 0.98, very close to 1.0. 

It can be seen, then, that when many body interactions are present RMC may fail 
to reproduce the structure correctly. However the structure produced is consistent 
with the experimental data so we must conclude that when many-body interactions 
are present the structure factor, even for an elemental system, does not contain 
sufficient information to enable the determination of all features of the structure. To 
produce a more accurate structure using RMC further constraints must be introduced 
based on other experimental data or on theoretical considerations. In cases such as 
this example, where we know the system is molecular, that is relatively easy. One 
way is to use molecular units, rather than atoms, as the particles that can be moved, 
and now also rotated, in the RMC calculation. This method has been described in 
detail elsewhere'. 

Such an RMC calculation has been performed using a configuration of 2000 
diatomic molecules, assuming that the bond length of the molecule is known. After 
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J 

0.4 - 

-0.3 - 
Z w -  

a 02- 

0.1- 
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4 

vJ 1 

N 

Figure 3. The radial distribution function (top), the intermolecular part of the structure factor (centre), 
for the MMC hard dumbell simulation (solid line) and for the RMC calculation (broken line) and (bottom) 
the coordination number distribution for the RMC calculation. 

convergence the radial distributiorl function and structure factor for the molecular 
centres have been calculated and are shown in Figure 3 in comparison with those 
obtained from MMC. For diatomic molecules the equivalent to g(r )  for atoms is 
y(r, 8, #) where B and # describe the relative orientation of the molecules. This 
function can be expanded as a series of spherical harmonic functions and their 
coefficients. The first coefficient is 1he molecular centres g(r)  (Figure 4); some of the 
higher ones are shown in Figure 5. 4lthough the statistics of these are relatively poor 
they are in good agreement with those obtained from MMC. 
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10 R. L. McGREEVY AND M. A. HOWE 
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4.4 

Our final test used the results of Rodger et al.’. They performed a molecular dynamics 
simulation of liquid chlorine using an anisotropic atom-atom effective pair potential 
which includes dipolar and quadrupolar terms. We fitted to their calculated g(r). 
Because of the small size of their configuration (128 molecules in a truncated 
octahedral simulation box) their g(r )  is truncated before the oscillations die out. We 
used a larger number of molecules: 500 in a cubic box. The molecular centres 
correlation function and three of the higher order spherical harmonic coefficients are 
shown in Figure 6. The agreement, although not perfect, is again seen to be fairly 
good. The differences may be due to the small size of the original MD simulation. 

Diatomic Liquid with Non-central Forces 

1.0 

0.5 

-,-,,.-- Y 0.0 

-0.5 

-1.0 I I I I , 

5 DISCUSSION 

The above results have shown that RMC is a suitable method for obtaining three 
body correlations for a monatomic liquid which can be described by a pairwise 
additive potential. For two component liquids” it has been shown that three 
body correlations can be correctly determined from three t.otal structure factors; three 

0.5 4 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 

r/A r/A 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 0.0 2.5 5.0 7.5 10.0 12.5 15.0 

r/A r/A 
Figure 6. Comparison of spherical harmonic coefficients of y(r, 8 , &  from RMC (broken line) and MMC 
(solid line) for liquid chlorine. 
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REVERSE MONTE CARL0 METHOD 1 1  

are of course required to determine the three partial radial distribution functions. In 
some cases a good approximation to the correct partial structure factors can in fact 
be obtained from only one total structure factor. 

Where purely pairwise additive potentials are not applicable then RMC may 
produce the correct result, but will not necessarily do so. If many body terms are 
small and an effective pairwise potential could be used then RMC will work, since 
it does not ‘know’ that potential is only effective, but when many body terms are 
significant RMC will produce a structure which is generally less ordered than the 
‘real’ one. However the application of constraints on the coordination of atoms is 
particularly powerful in this context, since these may be thought of as the very 
simplest form of many body potential. For instance diatomic molecules can be created 
from atoms by requiring each atom to be singly coordinated within a pair of specified 
distances; flexible S, ring molecules can be created from atoms by starting with a 
structure that contains rigid rings but only requiring that each atom retains its 
original two-fold coordination. 

Where suitable constraints may not be known it is possible to use them to 
investigate the range of structures that are consistent with the data available; these 
structures may then be assessed in the light of other information that is not readily 
quantifiable in the form of constraints”. It should however be noted that the 
application of constraints in cases where they are not appropriate, e.g. a Lennard 
Jones liquid, can lead to a structure that still fits the ‘experimental’ structure factor 
extremely well but has incorrect three body correlations. This is an interesting point 
since it suggests that the normal RMC algorithm, without constraints, achieves a 
suitable sampling of the parameter space (parameters being the atomic coordinates) 
to enable a ‘correct’ inversion from g(r) to the three dimensional structure. The 
application of constraints restricts the parameter space that can be sampled, so the 
‘correct’ answer will only be obtained if it is within the sampled region. Constraints 
should therefore be used either when they are known to be correct, or in the sense 
of empirical parameters. 

The above discussion has assumed that the available data are ‘perfect’. However 
real data will have a finite range, a finite resolution and will contain both statistical 
and systematic errors. Obviously the higher the quality of the data then the better 
will be the RMC results. The accuracy achievable in present day diffraction experi- 
ments is such that the errors in three body correlations determined by RMC 
modelling may be significantly smaller than the natural fluctuations in the liquid, i.e. 
they are not significant. However if information on longer range correlations is 
required then the data may be insufficient. For example in Figure 7 we show two 
structure factors for liquid rubidium close to the melting point, obtained by fitting 
to experimental data”. They are almost identical, but one corresponds to a liquid 
structure while the other corresponds to a highly disordered crystal structure. The 
short range order in the two is identical, but the latter has long range order. However 
this is sufficiently weak that Bragg peaks would only be visible at much higher 
resolution. This example illustrates that the information that may be obtained using 
RMC is, in the end, dependent upon the quality of the original data, just as the 
results of MMC or MD simulations depend on the potential. 
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12 R. L. McGREEVY AND M. A. HOWE 

0 1 2 3 4 5 6 7 8 9 10 

u/A-’ 
Figure 7. Two structure factors obtained fram RMC for molten rubidium. The solid line corresponds 
to a truly liquid like structure but i t  can be shown that the broken line corresponds to a highly disordered 
crystalline structure. 
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